Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643745

RESUMO

With the development of large-scale intensive feeding, growth performance and animal welfare have attracted more and more attention. Exogenous probiotics can promote the growth performance of fish through improving intestinal microbiota; however, it remains unclear whether intestinal microbiota influence physiological biomarkers. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of a 90-day Lactiplantibacillus plantarum supplementation to a basal diet (1.0 × 108 CFU/g) on the growth performance, intestinal microbiota and their metabolites, and physiological biomarkers in Coilia nasus larvae. The results showed that the probiotic supplementation could significantly increase weight and body length. Moreover, it could also enhance digestive enzymes and tight junctions, and inhibit oxidative stress and inflammation. The metagenomic analysis showed that L. plantarum supplementation could significantly decrease the relative abundance of Proteobacteria and increase the relative abundance of Firmicutes. Additionally, pathogenic bacteria (Aeromonadaceae, Aeromonas, and Enterobacterales) were inhibited and beneficial bacteria (Bacillales) were promoted. The metabolome analysis showed that acetic acid and propanoic acid were significantly elevated, and were associated with Kitasatospora, Seonamhaeicola, and Thauera. A correlation analysis demonstrated that the digestive enzymes, tight junction, oxidative stress, and inflammation effects were significantly associated with the increased acetic acid and propanoic acid levels. These results indicated that L. plantarum supplementation could improve intestinal microbial community structure and function, which could raise acetic acid and propanoic acid levels to protect intestinal health and improve growth performance in C. nasus larvae.

2.
Food Chem ; 451: 139325, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38657519

RESUMO

Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.

3.
Chemosphere ; 353: 141644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442774

RESUMO

Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 µm group (C) and 750 (D) µm group, 75 nm + 7.5 µm+750 µm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.


Assuntos
Chlorella vulgaris , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Microplásticos/toxicidade , Plásticos , Chlorella vulgaris/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
4.
Microorganisms ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543680

RESUMO

Recently, probiotics have been widely applied for the in situ remediation of aquatic water. Numerous studies have proved that probiotics can regulate water quality by improving the microbial community. Nitrogen cycling, induced by microorganisms, is a crucial process for maintaining the balance of the aquatic ecosystem. Nevertheless, the underlying mechanisms by which probiotics enhance water quality in aquatic systems remain poorly understood. To explore the water quality indicators and their correlation with nitrogen cycling-related functional genes, metagenomic analysis of element cycling was performed to identify nitrogen cycling-related functional genes in Coilia nasus aquatic water between the control group (C) and the groups supplemented with probiotics in feed (PF) or water (PW). The results showed that adding probiotics to the aquatic water could reduce the concentrations of ammonia nitrogen (NH4+-N), nitrite (NO2--N), and total nitrogen (TN) in the water. Community structure analysis revealed that the relative abundance of Verrucomicrobiota was increased from 30 d to 120 d (2.61% to 6.35%) in the PW group, while the relative abundance of Cyanobacteria was decreased from 30 d to 120 d (5.66% to 1.77%). We constructed a nitrogen cycling pathway diagram for C. nasus aquaculture ponds. The nitrogen cycle functional analysis showed that adding probiotics to the water could increase the relative abundance of the amoC_B and hao (Nitrification pathways) and the nirS and nosZ (Denitrification pathways). Correlation analysis revealed that NH4+-N was significantly negatively correlated with Limnohabitans, Sediminibacterium, and Algoriphagus, while NO2--N was significantly negatively correlated with Roseomonas and Rubrivivax. Our study demonstrated that adding probiotics to the water can promote nitrogen element conversion and migration, facilitate nitrogen cycling, benefit ecological environment protection, and remove nitrogen-containing compounds in aquaculture systems by altering the relative abundance of nitrogen cycling-related functional genes and microorganisms.

5.
Int. microbiol ; 27(1): 167-178, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230252

RESUMO

The compound known as effective microorganisms (EMs) is widely used in aquaculture to improve water quality, but how they affect the health of Chinese mitten crab (Eriocheir sinensis) is unclear, especially in terms of intestinal microbiota and serum metabolites. In this study, we fed juvenile crabs with an EM-containing diet to explore the effects of EM on the physiological status, intestinal microbiome, and metabolites of E. sinensis. The activities of alanine aminotransferase and alkaline phosphatase were significantly enhanced by EM, indicating that EM supplementation effectively enhanced the antioxidant capacity of E. sinensis. Proteobacteria, Tenericutes, Firmicutes, Bacteroidetes, and Actinobacteria were the main intestinal microbes in both the control and EM groups. Linear discriminant effect size analysis showed that Fusobacteriaceae, Desulfovibrio, and Morganella were biomarkers in the control group, and Exiguobacterium and Rhodobacteraceae were biomarkers in the EM group. Metabolomics analysis revealed that EM supplementation increased cellular energy sources and decreased protein consumption, and oxidative stress. Together, these results indicate that EM can optimize the intestinal microbiome and serum metabolites, thereby benefiting the health of E. sinensis.(AU)


Assuntos
Humanos , Biomarcadores , Antioxidantes/farmacologia , Microbioma Gastrointestinal , Imunidade Inata , Xiphosura americana/farmacologia , Dieta , Microbiologia , Técnicas Microbiológicas , Actinobacteria/metabolismo , Bacteroidetes/metabolismo , Firmicutes , Proteobactérias , Tenericutes
6.
Artigo em Inglês | MEDLINE | ID: mdl-38171069

RESUMO

Due to the strong response to air exposure, high mortality was occurred in Coilia nasus. Previous studies reported that 10 ‰ NaCl could significantly reduce mortality in C. nasus under air exposure. To investigate the mechanisms that 10 ‰ NaCl can alleviate stress, community structure and metabolism of the intestinal flora of C. nasus were detected via metagenome and metabolome. In this study, C. nasus were divided into control group (C), air exposure group without 10 ‰ NaCl (AE), and air exposure group with 10 ‰ NaCl (AES). After air exposure stress and salinity mitigation, the mortality, intestinal microorganisms, metabolites, and physiological biomarkers were analyzed. The results showed that the mortality rate of C. nasus was reduced after salinity reduction; the antioxidant capacity was elevated compared to the AE group; and anti-inflammatory capacity was increased in the AES group compared to the AE group. Metagenomic sequencing results showed that the levels of harmful bacteria (E. coli, Aeromonas) in the Candida nasus gut increased after air exposure; beneficial bacteria (Actinobacteria, Corynebacteria) in the C. nasus gut increased after salinity reduction. Metabolomics analyses showed that AE decreased the expression of beneficial metabolites and increased the expression of harmful metabolites; AES increased beneficial metabolites and decreased harmful metabolites. Correlation analysis showed that in the AE group, beneficial metabolites were negatively correlated with oxidative stress and inflammatory response, while harmful metabolites were positively correlated with oxidative stress and inflammatory response, and were associated with bacterial communities such as Gillisia, Alkalitalia, Avipoxvirus, etc.; the correlation of metabolites with oxidative stress and inflammatory response was opposite to that of AE in the case of AES, and was associated with Lentilactobacillus, Cyanobacterium, and other bacterial communities. Air exposure caused damage to Candida rhinoceros and 10 ‰ salinity was beneficial in alleviating C. nasus stress. These results will provide new insights into methods and mechanisms to mitigate stress in fish.


Assuntos
Microbioma Gastrointestinal , Animais , Metagenoma , Cloreto de Sódio/metabolismo , Salinidade , Escherichia coli , Peixes/genética , Estresse Oxidativo , Inflamação , Metaboloma
7.
Int Microbiol ; 27(1): 167-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37261580

RESUMO

The compound known as effective microorganisms (EMs) is widely used in aquaculture to improve water quality, but how they affect the health of Chinese mitten crab (Eriocheir sinensis) is unclear, especially in terms of intestinal microbiota and serum metabolites. In this study, we fed juvenile crabs with an EM-containing diet to explore the effects of EM on the physiological status, intestinal microbiome, and metabolites of E. sinensis. The activities of alanine aminotransferase and alkaline phosphatase were significantly enhanced by EM, indicating that EM supplementation effectively enhanced the antioxidant capacity of E. sinensis. Proteobacteria, Tenericutes, Firmicutes, Bacteroidetes, and Actinobacteria were the main intestinal microbes in both the control and EM groups. Linear discriminant effect size analysis showed that Fusobacteriaceae, Desulfovibrio, and Morganella were biomarkers in the control group, and Exiguobacterium and Rhodobacteraceae were biomarkers in the EM group. Metabolomics analysis revealed that EM supplementation increased cellular energy sources and decreased protein consumption, and oxidative stress. Together, these results indicate that EM can optimize the intestinal microbiome and serum metabolites, thereby benefiting the health of E. sinensis.


Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Antioxidantes/farmacologia , Dieta , Biomarcadores
8.
Br J Nutr ; 131(6): 974-986, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886873

RESUMO

To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.


Assuntos
Antioxidantes , Antioxidantes/metabolismo , Imunidade Inata , Dieta/veterinária , Peptídeos/farmacologia , Malondialdeído , Ração Animal/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-37996048

RESUMO

There is limited knowledge about the toxicity of Microcystin-LR (MC-LR) in crustaceans, despite its high toxicity to aquatic organisms. This research aimed to explore the effects of MC-LR on cytotoxicity, oxidative stress, and apoptosis in the hepatopancreas of Eriocheir sinensis, as well as elucidate the involvement of reactive oxygen species (ROS) and potential mechanisms of toxicity. In vivo and in vitro exposures of crabs to MC-LR and N-acetylcysteine (NAC) were performed, followed by assessments of cell morphology, viability, tissue pathology, biochemical indicators, gene expression, and hepatopancreatic transcriptome. Results revealed that MC-LR facilitated the entry of the MC-LR transporter oatp3a into hepatopancreatic cells, leading to upregulated expression of phase I detoxification enzyme genes (cyp4c, cyp2e1, and cyp3) and downregulated the phase II enzyme genes (gst1, gpx, gsr2, gclc, and nqo1), resulting in increased ROS levels and cytotoxic effects. MC-LR exhibited cytotoxicity, reducing cell viability and inducing abnormal nuclear morphology with a 48 h-IC50 value of approximately 120 µm. MC-LR exposure caused biochemical changes indicative of oxidative stress damage and evident hepatopancreatic lesions. Additionally, MC-LR exposure regulated the levels of bax and bcl-2 expression, activating caspase 3 and 6 to induce cell apoptosis. Intervention with NAC attenuated MC-LR-induced ROS production and associated toxic effects. Transcriptome analysis revealed enrichment of differentially expressed genes in pathways related to cytochrome P450-mediated xenobiotic metabolism and the FoxO signaling pathway. These findings shed light on the potential mechanisms underlying MC-LR toxicity and provide valuable references for further research and conservation efforts regarding the health of aquatic animals.


Assuntos
Braquiúros , Animais , Espécies Reativas de Oxigênio/metabolismo , Braquiúros/metabolismo , Estresse Oxidativo , Microcistinas/toxicidade , Apoptose
10.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128680

RESUMO

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Dieta Hiperlipídica , Resveratrol/metabolismo , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Intestinos , Transdução de Sinais , Ácidos Graxos/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Dieta , Suplementos Nutricionais , Ração Animal/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-38145793

RESUMO

Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.


Assuntos
Braquiúros , Herbicidas , Animais , Prometrina , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Herbicidas/toxicidade , Antioxidantes
12.
Ecotoxicol Environ Saf ; 267: 115661, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948941

RESUMO

With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.


Assuntos
MicroRNAs , Microcistinas , Animais , Humanos , Microcistinas/toxicidade , Hepatopâncreas/metabolismo , Ecossistema , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia , Mamíferos/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase
13.
Biology (Basel) ; 12(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998029

RESUMO

Recent studies have revealed a significant presence of microplastics (MPs) in freshwater ecosystems, raising concerns about their potential negative impacts on the growth and development of freshwater organisms. The present study was conducted to examine the effects of chronic sub-lethal doses of polystyrene microsphere MPs on the oxidative status (ROS, SOD) and the immune response (IL-1ß, TNF-α) of genetically improved farmed tilapia (a kind of tilapia hereafter referred to as GIFT). GIFT juveniles (5.1 ± 0.2 g) were exposed to different concentrations of substances. The experimental groups were as follows: group A (control, no exposure), group B (exposed to a concentration of 75 nm), group C (exposed to a concentration of 7.5 µm), group D (exposed to a concentration of 750 µm), group E (exposed to a combination of 75 nm, 7.5 µm, and 750 µm), and group F (exposed to a combination of 75 nm and Chlorella). The ROS contents in the brain and gills were significantly decreased in group F, while a significant increase was observed in group D following a 14-day exposure. SOD activities in the intestine showed an elevation in group F, as did those in the brain and gills in group D, while the SOD levels in the gills generally decreased over time in groups B and F. Notably, the highest ROS and SOD were observed in the brain of group D, whereas the lowest were in the intestines at the same concentration. The activity of IL-1ß in the liver was significantly up-regulated in all of the exposure groups. IL-1ß was significantly up-regulated in the brain of group B and in the gills of group D. Similarly, TNF-α was significantly up-regulated in the brain of groups B/D/E, in the liver of groups B/C/D, in the intestine of group B, and in the gills of group D. Notably, the highest levels of IL-1ß and TNF-α activities were recorded in the brain, while the lowest were recorded in the intestine of group D. Overall, this study revealed that GIFT's immune response and antioxidant system can be affected by MPs.

14.
Biology (Basel) ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759575

RESUMO

The process by which spermatogonial stem cells (SSCs) continuously go through mitosis, meiosis, and differentiation to produce gametes that transmit genetic information is known as spermatogenesis. Recapitulation of spermatogenesis in vitro is hindered by the challenge of collecting spermatogonial stem cells under long-term in vitro culture conditions. Coilia nasus is a commercially valuable anadromous migrant fish found in the Yangtze River in China. In the past few decades, exploitation and a deteriorating ecological environment have nearly caused the extinction of C. nasus's natural resources. In the present study, we established a stable spermatogonial stem cell line (CnSSC) from the gonadal tissue of the endangered species C. nasus. The cell line continued to proliferate and maintain stable cell morphology, a normal diploid karyotype, and gene expression patterns after more than one year of cell culture (>80 passages). Additionally, CnSSC cells could successfully differentiate into sperm cells through a coculture system. Therefore, the establishment of endangered species spermatogonial stem cell lines is a model for studying spermatogenesis in vitro and a feasible way to preserve germplasm resources.

15.
Aquat Toxicol ; 263: 106675, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666106

RESUMO

Methomyl (MET) is an oxime carbamate insecticide that can contaminate aquatic systems resulting in toxicological effects. It can harm some fish species possibly through the anti-oxidative, phagosome pathway. Mint is one of the most widely herbal plants exhibiting antioxidant activities. In this study, we investigated the impact of MET on the antioxidant system of Oreochromis niloticus in presence of mint as a floating bed. Results revealed that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, and glutathione S-transferase significantly decreased and the GSH content significantly increased in the intestine. The hepatic peroxisome proliferator-activated receptor (PPAR) signalling pathway, carbon metabolism, renal phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK) signalling pathway, and phagosomes were significantly affected. Upon long-term exposure, circadian rhythm and phagosomes were enriched in the liver and kidney. However, mint increased the enriched pathways of Toll-like receptor, PPAR, p53, NF-kappa B, MAPK, oestrogen, and B cell receptor signalling pathways. MET with different concentrations destroyed the balance of gut microbiota, mint decreased Verrucomicrobia and Akkermansia for the maintenance resulted from MET. Cetobacterium had a positive impact on total nitrogen (TN), chemical oxygen demand (CODMn), and glutathione reductase (GR), while Akkermansia had a positive impact on feed conversion ratio (FCR), SOD and CAT, and the abundance of both decreased due to MET exposure. High mint density removed more concentrations of nitrogen and phosphorus in the tilapia cultivation wastewater. Therefore, planting with mint can alleviate the toxicological effects produced by MET, shape the intestinal microbiota, and strengthen the connection between water quality and the metabolic parameters.

16.
Sci Total Environ ; 904: 166800, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673269

RESUMO

A 6-week trial was designed to investigate the effects of dietary sodium chloride supplementation on physiological, metabolic, and molecular stress response parameters. The findings showed that (1) there were no significant differences between sodium chloride supplementation groups (0.05S, 0.1S, and 0.15S) and the control group (P > 0.05), except for the 0.2S diet, which showed better final body weight, weight gain rate, specific growth rate, and feed conversion ratio than the control group (P < 0.05). (2) The hypothermic stress experiment results showed that the survival rates in the 0.1S and 0.15S diets were significantly higher than the control group (P < 0.05). (3) Transcription results showed that these enriched pathways in the gill were mainly energy metabolism and apoptosis pathways, while the major enrichment pathways in the liver were mainly amino acid metabolism and carbohydrate metabolism. (4) The plasma parameter results showed, compared to the control group, the 0.15S diet significantly increased the plasma GLU, TG contents, and Na+ and K+ concentrations and decreased the plasma ALT activity (P < 0.05). In addition, the 0.1S diet increased the plasma ALB content and Cl- concentration (P < 0.05). The gill Na+/K+-ATPase activity decreased markedly when the fish were fed the 0.1S and 0.15S diets (P < 0.05). The antioxidant enzyme activity results showed that the 0.1S and 0.15S diets significantly increased the T-SOD activities (P < 0.05). Gene expression results showed that compared to the control group, the 0.1S and 0.15S diets up-regulated the expression of gys, hsp70, mlcp, mlc, myosin, tnt mRNA, and down-regulated the akt, gk, and erk mRNA expression. Based on the regression analysis, the optimum dietary sodium chloride levels range from 0.10 % to 0.13 % of the diet, which could facilitate energy regulation, improve the immune response, and ultimately strengthen the cold resistance of GIFT.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Tilápia/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Dieta/veterinária , Antioxidantes/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ração Animal/análise , Suplementos Nutricionais/análise
17.
Antioxidants (Basel) ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37627543

RESUMO

There is growing evidence that long-term exposure to prometryn (a widely used herbicide) can induce toxicity in bony fish and shrimp. Our previous study demonstrated its 96 h acute toxicity on the crab Eriocheir sinensis. However, studies on whether longer exposure to prometryn with a lower dose induces toxicity in E. sinensis are scarce. Therefore, we conducted a 20 d exposure experiment to investigate its effects on the hepatopancreas and intestine of E. sinensi. Prometryn reduce the activities of antioxidant enzymes, increase the level of lipid peroxidation and cause oxidative stress. Moreover, long-term exposure resulted in immune and detoxification fatigue, while short-term exposure to prometryn could upregulate the expression of genes related to immunity, inflammation and detoxification. Prometryn altered the morphological structure of the hepatopancreas (swollen lumen) and intestine (shorter intestinal villi, thinner muscle layer and thicker peritrophic membrane). In addition, prometryn changed the species composition of the intestinal flora. In particular, Bacteroidota and Proteobacteria showed a dose-dependent decrease accompanied by a dose-dependent increase in Firmicutes at the phylum level. At the genus level, all exposure groups significantly increased the abundance of Zoogloea and a Firmicutes bacterium ZOR0006, but decreased Shewanella abundance. Interestingly, Pearson correlation analysis indicated a potential association between differential flora and hepatopancreatic disorder. Phenotypic abundance analysis indicated that changes in the gut flora decreased the intestinal organ's resistance to stress and increased the potential for opportunistic infection. In summary, our research provides new insights into the prevention and defense strategies in response to external adverse environments and contributes to the sustainable development of E. sinensis culture.

18.
ACS Omega ; 8(33): 29966-29978, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636932

RESUMO

In this study, a composite of pond mud and lanthanum- and nano-zero valent iron-modified-biochar was investigated for its ability to adsorb methylene blue (MB) and sulfamethazine (SMZ). La-modified attapulgite and nano-zero valent iron (surface area enhanced by 43.7% via Brunauer-Emmett-Teller analysis) were successfully loaded onto the straw-sediment biochar (BC) surface. With the increase in pyrolysis temperature, the biocompatibility yield, the H, O, and N content, and the ratio of carbon elements decreased, while the pH value, surficial micropores, C element, and ash content increased. The biocarbon small molecules were gradually and tightly ordered, and the organic groups such as hydroxyl, carboxyl groups, and carbon oxygen double bonds were gradually lost or disappeared. The original Fe-BC had more phenolic hydroxyl groups forming an intermolecular hydrogen bond than others with a higher adsorption capacity possibly through the Schiff base reaction. The effect of various pH (2-9), temperature (15-35 °C), and initial concentration (1-25 mg L-1) on adsorption was investigated. pH and temperature were the main factors governing the adsorption process. The maximum adsorption capacity was observed at pH 4. The adsorption performances for MB followed the order Fe-BC > La-BC > BC, and the maximum removal rate was over 98.45% with pH = 7. The three types of BC dosages between 0.2 (6.67 g L-1) and 0.4 g showed a removal rate of 99% for MB. The adsorption capacity of Fe-BC, La-BC, and BC for MB was 2.201, 1.905, and 2.401 mg L-1 with pH = 4, while 4.79, 4.58, and 5.55 mg g-1 were observed with BC dosage at 0.025 g. For SMZ, the higher the temperature, the better the adsorption effect, and it reaches saturation at approximately 25 °C. To further evaluate the nature of adsorption, Langmuir/Freundlich/Temkin models were tested and the adsorption capacities were evaluated on the surface of the BC composite. The three modified materials were physisorbed to SMZ, while MB was chemisorbed. For MB, the adsorption performance of BC is the best < 0.2 g (6.67 g L-1) at pH 7.0 at 35 °C. The Elovich model was more suitable for MB, while the Freundlich and Temkin models could better fit the adsorption process of MB. The preparatory secondary dynamics equation and Langmuir equation were more compliant for SMZ, and the saturated adsorption capacities of straw-modified, La-BC, and Fe-BC reached 5.699, 6.088, and 5.678 mg L-1, respectively.

19.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446357

RESUMO

Eriocheir sinensis is traditionally a native high-value crab that is widely distributed in eastern Asia, and the precocity is considered the bottleneck problem affecting the development of the industry. The precocious E. sinensis is defined as a crab that reaches complete sexual maturation during the first year of its lifespan rather than as normally in the second year. However, the exact regulatory mechanisms underlying the precocity are still unclear to date. This study is the first to explore the mechanism of precocity with transcriptome-metabolome association analysis between the precocious and normal sexually mature E. sinensis. Our results indicated that the phenylalanine metabolism (map00360) and neuroactive ligand-receptor interaction (map04080) pathways play an important role in the precocity in the ovary of E. sinensis. In map00360, the predicted aromatic-L-amino-acid decarboxylase and 4-hydroxyphenylpyruvate dioxygenase isoform X1 genes and the phenethylamine, phenylethyl alcohol, trans-2-hydroxycinnamate, and L-tyrosine metabolites were all down-regulated in the ovary of the precocious E. sinensis. The map04080 was the common KEGG pathway in the ovary and hepatopancreas between the precocious and normal crab. In the ovary, the predicted growth hormone secretagogue receptor type 1 gene was up-regulated, and the L-glutamate metabolite was down-regulated in the precocious E. sinensis. In the hepatopancreas, the predicted forkhead box protein I2 gene and taurine metabolite were up-regulated and the the L-glutamate metabolite was down-regulated in the precocious crab. There was no common pathway in the testis. Numerous common pathways in the hepatopancreas between male precocious and normal crab were identified. The specific amino acids, fatty acids and flavorful nucleotide (inosine monophosphate (MP), cytidine MP, adenosine MP, uridine MP, and guanosine MP) contents in the hepatopancreas and gonads further confirmed the above omics results. Our results suggest that the phenylalanine metabolism may affect the ovarian development by changing the contents of the neurotransmitter and tyrosine. The neuroactive ligand-receptor interaction pathway may affect the growth by changing the expressions of related genes and affect the umami taste of the gonads and hepatopancreas through the differences of L-glutamate metabolite in the precocious E. sinensis. The results provided valuable and novel insights on the precocious mechanism and may have a significant impact on the development of the E. sinensis aquaculture industry.


Assuntos
Braquiúros , Transcriptoma , Feminino , Masculino , Animais , Ácido Glutâmico/metabolismo , Ligantes , Metabolômica , Fenilalanina/metabolismo , Braquiúros/genética , Hepatopâncreas/metabolismo
20.
Microorganisms ; 11(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37317330

RESUMO

This study investigated the effects of dietary commercial feed (n = 50,025 in triplicate, named group PF for soil dike pond, sampling n = 7; n = 15,000 in triplicate, WF for water tank, n = 8), iced fish (n = 50,025 in triplicate, PI, n = 7), and a combination of both (n = 50,025 in triplicate, PFI, n = 8) on different metabolic parameters of the largemouth bass, Micropterus salmoides (0.67 ± 0.09 g, culture period from June 2017 to July 2018). Throughout the experimental period, different areas of water (including input water of the front, middle of the pond, and from the drain off at the back) and their mixed samples were simultaneously analyzed to find the source of the main infectious bacteria. Various feeding strategies may differentially affect body composition and shape the gut microbiota, but the mode of action has not been determined. Results showed that no significant differences were found in the growth performance except for the product yield using a different culture mode (PFI vs. WF). For muscle composition, the higher ∑SFA, ∑MUFA, ∑n-6PUFA, and 18:3n-3/18:2n-6 levels were detected in largemouth bass fed with iced fish, while enrichment in ∑n-3PUFA and ∑HUFA was detected in largemouth bass fed with commercial feed. For the gut microbiota, Fusobacteria, Proteobacteria, and Firmicutes were the most dominant phyla among all the gut samples. The abundance of Firmicutes and Tenericutes significantly decreased and later increased with iced fish feeding. The relative abundance of species from the Clostridia, Mollicutes, Mycoplasmatales, and families (Clostridiaceae and Mycoplasmataceae) significantly increased in the feed plus iced fish (PFI) group relative to that in the iced fish (PI) group. Pathways of carbohydrate metabolism and the digestive system were enriched in the commercial feed group, whereas infectious bacterial disease resistance-related pathways were enriched in the iced fish group, corresponding to the higher rate of death, fatty liver disease, and frequency and duration of cyanobacteria outbreaks. Feeding with iced fish resulted in more activities in the digestive system and energy metabolism, more efficient fatty acid metabolism, had higher ∑MUFA, and simultaneously had the potential for protection against infectious bacteria from the environment through a change in intestinal microbiota in the pond of largemouth bass culturing. Finally, the difference in feed related to the digestive system may contribute to the significant microbiota branch in the fish gut, and the input and outflow of water affects the intestinal flora in the surrounding water and in the gut, which in turn affects growth and disease resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...